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ABSTRACT

An investigation was conducted to dissect the genetic divergence in a panel of 278 sorghum genotypes,
including minicore accessions and improved lines, under natural fall armyworm (FAW) infestation.
Application of Mahalanobis D statistics and Tocher’s clustering grouped the genotypes into 15 clusters,
with Cluster I as the largest (147 genotypes) and Clusters XII, XIII, XIV, and XV representing solitary
accessions. Maximum intra-cluster diversity was observed in Cluster XI (34.68), while the most
pronounced inter-cluster divergence was between Cluster XII and Cluster V (422.68), revealing
considerable genetic differences among clusters and underscoring the potential for hybridization between
distant clusters to exploit maximum variability. Principal component analysis identified three major
components contributing 61.3% of the total variance. Trait-specific cluster means highlighted distinct
genetic resources: Cluster XI harboured the promising FAW-resistant and tallest plants, Cluster VI
excelled in grain yield, Cluster XII showed superior seedling vigour, Cluster IX demonstrated enhanced
glossiness, and Cluster III represented genotypes with the lowest leaf sheath pigmentation. Analysis of
divergence showed that plant height contributed 41.2% to total genetic divergence, followed by leaf
sheath pigmentation (34.2%) and grain yield (17.3%), with these three traits together accounting for over
90% of diversity among the genotypes. These findings provide a robust framework for breeding
programs, advocating hybridization between genetically diverse clusters, especially those with
outstanding performance for key resistance and agronomic traits, to develop high-yielding, FAW-
resilient sorghum cultivars for sustainable agriculture in pest-prone environments.
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Introduction

Sorghum (Sorghum bicolor (L.) Moench), a
globally important cereal crop, is valued for its diverse
applications as food, feed, fodder, and fuel. Its
resilience to drought, heat, and low-input conditions
makes it particularly suited for cultivation in climate-
stressed, water-scarce regions, directly contributing to
food and nutritional security (Hossain et al., 2022).
Despite its importance, sorghum productivity is

increasingly constrained by insect pests, which cause
economic losses exceeding US$1 billion annually in
the semi-arid tropics (Arora et al., 2025; Onkarappa et
al., 2024). Among these, the fall armyworm (FAW,
Spodoptera frugiperda J.E. Smith) has emerged as a
highly invasive pest, capable of inflicting yield losses
of up to 80% in maize, sorghum, and millets, with
estimated economic damage of $13 billion annually in
sub-Saharan Africa (Overton et al., 2021).
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Host plant resistance (HPR) offers one of the most
sustainable and farmer-friendly strategies for FAW
management (Deshmukh ef al., 2021; Prasanna et al.,
2018). However, FAW resistance in sorghum remains
poorly studied compared to maize. Since resistance is
quantitative and polygenic in nature, the presence of
adequate genetic variability in germplasm collections
is critical for identifying durable sources of resistance.
The sorghum minicore collection (242 accessions)
developed at ICRISAT (Upadhyaya & Ortiz, 2001),
along with elite breeding lines from the All India
Coordinated Research Project (AICRP) on Sorghum,
represents a valuable platform for resistance screening
and diversity assessment.

Knowledge of genetic variability, heritability, and
genetic divergence is essential for effective utilization
of germplasm in breeding programs (Johnson et al.,
1955). Statistical approaches such as Mahalanobis D?
analysis and clustering methods enable the
quantification of genetic diversity, the classification of
genotypes into distinct groups, and the identification of
diverse parents for use in hybridization programs.
Despite the growing threat of FAW, systematic studies
combining genetic variability and clustering analyses
in sorghum under natural infestation conditions are
limited.

Therefore, the present investigation was
undertaken to assess genetic variability, heritability,
and genetic divergence among diverse sorghum
genotypes evaluated under natural FAW infestation,
with the objective of identifying promising and diverse
genotypes for their potential use in resistance breeding.

Materials and Methods

The present investigation was carried out during
the post-rainy season of 2023 under natural FAW
infestation at the Main Agricultural Research Station
(MARS), University of Agricultural Sciences (UAS),
Dharwad, Karnataka, India (15°29'N, 74°59'E, 689 m
amsl). The experimental material comprised a wide
range of sorghum genotypes, specifically 242 minicore
accessions from the International Crops Research
Institute for the Semi-Arid Tropics (ICRISAT), 34 elite
improved lines curated by the All India Coordinated
Research Project (AICRP) on Sorghum, Dharwad, and
two common standard checks (resistant: IS 18551;
susceptible: Swarna). The trial was laid out in a
randomized complete block design with two
replications. Each genotype was planted in a single row
of 4 m length with a spacing of 75 cm between rows
and 15 cm between plants. Thinning was carried out 10
days after emergence (DAE) to establish a final stand
of 25-26 plants per plot. To encourage uniform natural

infestation of FAW, a border row of maize was planted
around the experimental plots.

Data were recorded from five randomly selected
plants for six quantitative traits namely foliar damage
score, leaf glossiness, seedling vigour, leaf sheath
pigmentation, plant height (cm), and grain yield per
plant (g). Foliar damage (FDS) was scored visually at
40 DAE on a 0-9 scale (0 = no visible damage, 9 =
complete defoliation) as per (Davis et al., 1992;
Wiseman et al., 1966). Leaf glossiness (GLS) was
assessed visually at 10 DAE on a 1-3 scale (1 = highly
glossy, 3 = non-glossy), and seedling vigour (VGR)
was scored on a similar 1-3 scale (1 = highly vigorous,
3 = poor) following (Sharma & Nwanze, 1997). Leaf
sheath pigmentation (LSP) was rated at 57 DAE on a
1-5 scale (1 = dark pink pigment, 5 = green pigment)
as per (Dhillon et al., 2005). Plant height (PH) was
measured from the soil surface to the panicle tip at
maturity, and grain yield per plant (GY) was recorded
from five randomly selected panicles harvested from
each plot.

All data analysis was carried out using the ‘metan’
R package (Olivoto & Lucio, 2020) in R software.
Mahalanobis’ D? statistics (Mahalanobis, 1936) was
employed to quantify the degree of genetic divergence
and Tocher’s method was used for clustering the
genotypes into distinct groups as described by (Rao,
1952). To visualize patterns of genetic divergence, a
heatmap of pairwise Mahalanobis D? distances was
generated, where higher values indicate greater
divergence among genotypes. Additionally,
hierarchical clustering using the Unweighted Pair
Group Method with Arithmetic Mean (UPGMA)
(Sneath and Sokal, 1973) based on Mahalanobis D2
distances was performed.

Results and Discussion
Basic Statistics

Analysis of variance revealed highly significant
genotypic variation (p < 0.01) (Table 1) for most traits,
indicating the presence of distinct genetic control
patterns across them. LSP, PH, and GY exhibited high
genotypic variances and broad-sense heritability (h? =
0.88, 0.90, and 0.77, respectively). The high genetic
advance as a percentage of mean (GA%) for PH
(72.39%) and GY (20.99%) further suggests the
predominance of additive gene action, implying that
direct selection would be effective for these traits
(Faysal et al., 2022).

In contrast, VGR, GLS, and FDS showed
relatively low heritability (h? = 0.15-0.31) and
moderate GA, indicating greater environmental
influence and non-additive gene effects. Therefore,
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improvement of these traits would benefit more from
integrated breeding approaches (Yadav et al., 2021).

Principal component analysis based on six traits
revealed three major components explaining 61.3% of
the total variance, with PC1 (22.8%) and PC2 (20.7%)
capturing most of the phenotypic differentiation among
genotypes. These components indicate that a few key
traits contribute considerably to genetic variability and
can guide selection for diversity and trait improvement
(Greenacre et al., 2022).

Cluster Analysis by Mahalanobis Distance
Clustering Pattern

Mahalanobis D? statistics were used to assess
genetic divergence among 278 sorghum genotypes, and
clustering was performed using Tocher’s method (Rao,
1952). The genotypes were grouped into 15 distinct
clusters, revealing considerable variability across traits
(Figure 1). Boxplots clearly show wide inter-cluster
variation, indicating strong genetic diversity among
genotypes. Cluster I was the largest, comprising 147
genotypes, followed by Cluster III (39) and Cluster II
(32). Clusters IV-VII contained 7-17 genotypes, while
Clusters VIII-XI included 2-5 genotypes each. The
remaining Clusters XII-XV were mono-
genotypic/solitary, representing highly divergent lines.

The coexistence of large and small clusters
reflects varying degrees of genetic relatedness among
genotypes. Larger clusters denote genetically similar
lines, whereas mono-genotypic clusters represent
unique genotypes possessing distinct trait combinations
or adaptive advantages. The absence of a clear
association between cluster composition and
geographical origin suggests that genetic divergence is
governed more by selection and adaptation than by
geographic distribution (Tiwari ef al., 2022).

From a breeding perspective, crossing genotypes
from distantly related clusters (Cluster I x Cluster XII
or Cluster IV x Cluster XIII) is expected to generate
maximum heterosis and broader genetic variability,
thereby enhancing the chances of identifying superior
segregates for FAW resistance and yield improvement
(Parameshwarappa et al., 2011). The Mahalanobis D?
heatmap (Figure 2) further highlighted a wide genetic
divergence, with clearly distinguishable groups of
genotypes separated by higher pairwise D? distances
(yellow—orange zones). The clustering pattern
corresponds well with the Tocher grouping, supporting
the presence of considerable genetic variability among
the diverse germplasm lines evaluated for FAW
resistance and productivity traits. To visualize the
genetic divergence pattern, hierarchical cluster analysis
(Unweighted Pair Group Method with Arithmetic
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Mean) based on Mahalanobis D2 statistics was
performed (Figure 3). The dendrogram revealed clear
separation among genotype groups, which broadly
corresponded with the clusters obtained through
Tocher’s method.

Intra and Inter-Cluster Distance

The intra and inter-cluster D? values among the
fifteen clusters are presented in Table 2. Considerable
variation was observed in the magnitude of genetic
divergence, confirming wide genetic diversity among
the genotypes.

The maximum intra-cluster distance was observed
for Cluster XI (34.68), followed by Cluster III (27.60)
and Cluster VI (26.65), indicating greater
heterogeneity among the genotypes within these
clusters. In contrast, theleast intra cluster
distance (0.00) was recorded for Clusters XII, XIII,
X1V, and XV, reflecting a high degree of genetic
homogeneity, likely because they contained only one
genotype each. Clusters with low intra-cluster
distances (II, V, VI, VI, X) suggest that their
genotypes are genetically similar, showing a narrow
range of variability. Variation in intra-cluster distance
values arises from differences in the extent of genetic
relatedness and heterogeneity within clusters. Larger
intra-cluster distances indicate that genetically diverse
genotypes are grouped together, while smaller or zero
distances suggest uniformity or mono-genotypic
clusters

A wide range of inter-cluster distances was also
observed, highlighting genetic distinctness among
genotypes. The maximum inter cluster distance
occurred between Cluster XII and Cluster V (422.68),
followed by Cluster XII and Cluster IV (369.70),
Cluster XIV and Cluster X (363.24), and Cluster XIII
and Cluster IV (300.33). These large distances indicate
high genetic divergence, suggesting that crosses among
these clusters would likely yield superior recombinants
and broader genetic variability (Bekis et al., 2021).

Conversely, the lowest inter-cluster distance was
observed between Cluster VII and Cluster XIV (64.75)
and between Cluster I and Cluster II (66.89), indicating
close genetic relationships and limited divergence
among these clusters. Crosses among such closely
related genotypes may not result in better heterosis or
wider variability in progeny (Parameshwarappa et al.,
2011).

In this study, the inter-cluster distances were
found to be greater than the intra-cluster distances,
indicating significant genetic diversity among the mini
core accessions. This suggests a higher potential for
obtaining rare, superior segregants through crosses
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between genetically distant accessions. These findings
are consistent with observations reported by previous
studies (Gebre et al., 2025; Karadi & Kajjidoni, 2019;
Prasad & Biradar, 2018; Santhiya et al., 2025; Verma
et al., n.d.; Vijaylaxmi et al., 2019).

Cluster Means across Traits

The cluster mean values showed wide variation
across all traits (Table 3). Cluster III recorded the
lowest mean for LSP which has been associated with
tolerant or moderately resistant lines. Cluster XII
exhibited the lowest mean for VGR, reflecting superior
early growth. Cluster IX showed the lowest mean for
GLS, indicating enhanced leaf surface reflectance and
potential stress tolerance. Cluster XI had the lowest
mean for FDS, signifying better resistance to fall
armyworm.

For PH, Cluster XI recorded the highest mean,
denoting tall and vigorous genotypes suitable for
fodder or biomass use. GY was highest in Cluster VI,
followed by Clusters II and V, highlighting groups
with  superior  productivity potential. = Hence,
hybridization among genetically diverse clusters
excelling in different traits would help obtain
transgressive segregates combining desirable attributes
for sorghum improvement.

Contribution of Traits to Divergence

The contribution of individual traits to total
genetic divergence (Figure 4) revealed that PH was the

most influential, contributing 41.2% of total
divergence, followed by LSP (34.2%) and GY
(17.3%). These three traits together accounted for over
90% of the total variation, highlighting their
importance in differentiating genotypes for growth and
yield potential.

In contrast, GLS, VGR, and FDS contributed
minor but notable proportions (2.9%, 2.3%, and 2.2%,
respectively), suggesting their secondary yet relevant
roles in shaping the overall diversity structure.

Conclusion

This comprehensive multivariate assessment of
sorghum germplasm under natural FAW infestation
revealed significant genetic variability and distinct
divergent clusters. Plant height, leaf sheath
pigmentation, and grain yield accounted for the
majority of genetic divergence, while mono-genotypic
clusters identified highly unique and potentially
valuable lines. The substantial inter-cluster genetic
distances observed suggest that hybridization between
genetically distant groups can maximize recombination
and unlock superior segregates for FAW resistance and
yield enhancement. The study provides a framework
for sorghum breeding, guiding the targeted use of
genetically diverse parents to achieve resistance
breeding goals in the context of global pest pressures
and climate resilience.

Table 1: Analysis of variance (ANOVA), variance components, broad-sense heritability (h?), and genetic advance
(GA) for six traits evaluated under field conditions in sorghum minicore accessions.

Trait Replication F | Genotype F | Env. Var (¢6.>) | Gen. Var (c,2) | Phen. Var (6% | h? (broad) | GA (%)
LSP 14.50%*** 16.28*** 0.21 1.63 1.85 0.88 2.48
VGR 81.69%*** 1.36%* 0.43 0.07 0.51 0.15 0.22
GLS 42 98*** 1.88%** 0.22 0.09 0.32 0.30 0.36
FDS 35.39%** 1.30* 0.74 0.11 0.86 0.13 0.25
PH 182.28%%* 19.17%*** 150.92 1,370.95 1,521.88 0.90 72.39
GY 1.79n.s. 7.55%%% 41.39 135.60 177.00 0.76 20.99

(***p < 0.001, **p < 0.01, p < 0.05, n.s. — non-significant)
Leaf sheath pigmentation (LSP), seedling vigour (VGR), glossiness (GLS), foliar damage score (FDS), plant height (PH), and grain yield

(GY)

Table 2: Average intra (Bolded Diagonal) and inter-cluster (off Diagonal) distances in sorghum diverse

germplasm

Cluster | I 1I 111 10 A\ VI VII | VIII IX X XI XII | XIII | XTIV XV
I 23.01(66.89| 83.74 | 61.28 |160.02| 94.76 | 81.19 | 62.18 | 40.37 | 108.25|132.51|205.07|200.59|193.57|120.59
11 19.09|148.48 | 184.88301.44| 72.21 | 74.75 |153.31] 59.24 [138.10[157.12|103.60|173.65[229.02 | 197.10
111 27.60 | 78.39 | 58.47 | 66.98 [141.20| 82.13 | 79.51 | 38.90 | 59.07 [247.20[194.82|260.44| 99.76
IV 25.14 | 82.54 [168.41[171.75] 60.36 | 90.01 |123.75]161.25|369.70{300.33|263.18 | 128.86
)\ 18.99 |172.39(250.02|105.74 | 177.51] 96.53 |111.02|422.68 |300.76 |334.90| 122.74
VI 21.51 | 91.74 |130.32| 78.17 | 56.76 | 49.79 |107.55|121.40|237.11|128.83
VII 20.17 | 78.06 |123.12|185.26|111.20| 68.13 | 55.45 | 64.75 | 67.59
VIII 26.65 | 116.54|149.84|102.09]224.60|144.56|111.36| 38.60
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IX 22.56 | 69.56 |146.33|222.58|246.40|284.61 |183.40
X 17.14 | 84.68 [260.38|249.94|363.24|177.70
XI 34.68 | 149.80|100.42|204.30| 73.05
XII 0.00 | 47.19 |147.80|175.87
XIII 0.00 | 59.67 | 65.46
X1V 0.00 | 59.22
XV 0.00
Table 3: Cluster means for six characters in sorghum diverse germplasm
Cluster LSP VGR GLS FDS PH (cm) GY (g)
| 4.05 3.13 2.58 3.21 204.0 28.0
11 4.04 3.09 2.54 3.36 190.0 31.2
111 3.54 2.88 2.49 2.93 205.0 28.3
v 4.29 3.01 2.69 2.81 200.0 28.3
\4 4.14 3.64 3.00 3.06 252.0 30.9
VI 3.98 3.48 2.60 3.61 192.0 35.8
VII 4.70 2.75 2.69 2.81 253.0 23.4
VIII 4.65 2.30 2.50 2.96 239.0 26.9
IX 4.83 2.75 2.42 2.33 236.0 29.4
X 5.00 2.50 2.62 2.30 268.0 24.2
XI 4.12 2.62 2.75 2.10 288.0 22.6
XII 5.00 2.25 3.00 3.20 235.0 23.0
XIIT 5.00 3.50 2.75 2.80 230.0 26.6
XIV 4.00 3.25 2.75 2.40 280.0 18.7
XV 5.00 3.00 4.00 3.88 110.0 28.4

Leaf sheath pigmentation (LSP), seedling vigour (VGR), glossiness (GLS), foliar damage score (FDS), plant height (PH),
and grain yield (GY)

Trait Distribution Across Tocher Clusters
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Fig. 1 : Trait distribution across Tocher clusters for six traits in sorghum minicore accessions.

Boxplots depict the variation in leaf sheath
pigmentation (LSP), seedling vigour (VGR), glossiness
(GLS), foliar damage score (FDS), plant height (PH),
and grain yield (GY) among 15 clusters derived from

Mahalanobis D? analysis. Each box represents the
interquartile range within clusters, showing distinct
trait patterns across genotypic groups.
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Heatmap of Mahalanobis D? Distances
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Fig. 2: Heatmap of Mahalanobis D? distances depicting genetic divergence among sorghum genotypes.

The color gradient represents pairwise D? values, where lighter shades (yellow—orange) indicate greater genetic
distances, and darker shades (blue) indicate higher similarity among genotypes.
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Fig. 3 : Hierarchical cluster dendrogram of sorghum genotypes based on Mahalanobis D? statistics using the Unweighted Pair
Group Method with Arithmetic Mean (UPGMA).
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PH (41.2%)

LSP (34.2%)

FDS (2.2%)
VGR (2.3%)
GLS (2.9%)

GY (17.3%)

Fig. 4: Relative contribution (%) of traits to total genetic divergence among sorghum genotypes
based on Mahalanobis D? statistics.
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